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Abstract. This paper deals with links and braids up to link-homotopy,
studied from the viewpoint of Habiro’s clasper calculus. More precisely, we

use clasper homotopy calculus in two main directions. First, we define and
compute a faithful linear representation of the homotopy braid group, by us-
ing claspers as geometric commutators. Second, we give a geometric proof of
Levine’s classification of 4-component links up to link-homotopy, and go fur-

ther with the classification of 5-component links in the algebraically split case.

1. Introduction.

The notion of link-homotopy was introduced in 1954 by Milnor in [22], in the context

of knot theory. It is an equivalence relation on links that allows continuous deformations

during which two distinct components remain disjoint at all times, but each component

can self-intersect. Any knot is link-homotopic to the trivial one, but for links with more

than one component this equivalence relation turns out to be quite rich and intricate.

Since Milnor’s seminal work, link-homotopy has been the subject of numerous works in

knot theory see e.g. [6], [17], [24], [8], but also more generally in the study of codimension

2 embeddings (and in particular knotted surfaces in dimension 4) [20], [3], [2] and link-

maps (self-immersed spheres) [4], [14], [15], [25]. In this paper we are interested in the

study of link-homotopy for braids and links.

The homotopy braid group has been studied by many authors. In [6] Goldsmith gives

an example of a non-trivial braid up to isotopy that is trivial up to link-homotopy; she

also gives a presentation of the homotopy braid group. A representation of the homotopy

braid group is given by Humphries in [13]. He uses it to show that the homotopy braid

group is torsion-free for less than 6 strands. Finally the pure homotopy braid group has

been studied by Habegger and Lin in [8] as an intermediate object for the classification

of links up to link-homotopy. As further developed below, our first main result is another

linear representation of the homotopy braid group (Theorem 3.23), which we prove to be

faithful (Theorem 3.31) and which is computed explicitly in Theorem 3.26.

We also address the problem initially posed by Milnor in [22], of classifying links in

the 3-sphere up to link-homotopy. Milnor himself answered the question for the 2 and

3-component case. Furthermore, Habegger and Lin [8] proposed a complete classification,

using a subtle algebraic equivalence relation on pure braids, where two equivalent braids

correspond to link-homotopic links. A more direct algebraic approach had been proposed
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by Levine [17] just before the work of Habegger–Lin in the 4-component case. Our second

main result is a new geometric proof of Levine’s classification of 4-component links up

to link-homotopy (Theorem 4.7). This approach seems to apply, at least in principle, to

links with a higher number of components: we illustrate this in Theorem 4.10 with the

case of algebraically split 5-component links (that is, 5-component links with vanishing

linking numbers).

The notion of clasper was developed by Habiro in [9]. These are surfaces in

3-manifolds with some additional structure, on which surgery operations can be per-

formed. In [9], Habiro describes the clasper calculus up to isotopy, which is a set of

geometric operations on claspers that yield equivalent surgery results. It is well known

to experts how clasper calculus can be refined for the study of knotted objects up to

link-homotopy (see for example [5], [26]). This homotopy clasper calculus, which we

review in Section 2, will be the key tool for proving all the main results outlined above.

The rest of this paper consists of three sections.

In Section 2, we review the homotopy clasper calculus: after briefly recalling from

[9] Habiro’s clasper theory, we recall how a fundamental lemma from [5], combined with

Habiro’s work, produces a set of geometric operations on claspers having link-homotopic

surgery results.

Section 3 is dedicated to the study of braids up to link-homotopy. We start by

reinterpreting braids in terms of claspers. In Section 3.1 we define comb-claspers, a

family of claspers corresponding to braid commutators. They are next used to define a

normal form on homotopy braids, thus allowing us to rewrite any braid as an ordered

product of comb-claspers. In Section 3.2 after a short algebraic interlude, we give a

presentation of the pure homotopy braid group (Corollary 3.20), using the work of [6]

and [23] as well as the technology of claspers. Finally, we define and study in Section 3.3

a representation of the homotopy braid group which is in a sense the linearization of

the homotopy Artin representation. We give its explicit computation in Theorem 3.26

(see also Example 3.28 for the 3-strand case) and show its injectivity in Theorem 3.31.

Moreover, from the injectivity of the representation follows the uniqueness of the normal

form and thus the definition of the clasp-numbers, a collection of braid invariant up to

link-homotopy. Note that our representation has lower dimension than Humphries one.

The correspondence between the two representations has not been established yet, but

we wonder if our representation could open new leads on the torsion problem for more

than six strands.

The final Section 4 focuses on the study of links up to link-homotopy. The method

used is based on the precise description of some operations, which generate the algebraic

equivalence relation mentioned above in the classification result of Habegger and Lin [8];

we provide them with a topological description in terms of claspers. This new point of

view allows us, for a small number of components, to describe when two braids in normal

form have link-homotopic closures. We translate in terms of clasp-number variations

the action of those operations on the normal form. In this way we recover the classi-

fication results of Milnor [22] and Levine [17] for 4 or less components (Theorem 4.7).

Moreover, we also classify 5-component algebraically split links up to link-homotopy

(Theorem 4.10).
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2. Clasper calculus up to link-homotopy.

Clasper calculus has been developed by Habiro in [9] in the context of tangles up to

isotopy. Claspers turn out to be in fact a powerful tool to deal with link-homotopy. In

this section we first define claspers and their associated vocabulary. Then we describe

how to handle claspers up to link-homotopy.

2.1. General definitions.

Let M be a smooth compact and oriented 3-manifold.

Definition 2.1. An n-component tangle in M is a smooth embedding of an n-

component ordered and oriented 1-manifold (a disjoint union of circles and intervals)

into M .

• We say that two tangles are isotopic if they are related by an ambient isotopy of

M that fixes the boundary.

• We say that two tangles are link-homotopic if there is a homotopy between them

fixing the boundary, and such that the distinct components remain disjoint during

the deformation.

Definition 2.2. A disk T smoothly embedded in M is called a clasper for a tangle

θ if it satisfies the following three conditions:

• T is the embedding of a connected thickened uni-trivalent graph with a cyclic

order at each trivalent vertex. Thickened univalent vertices are called leaves, and

thickened trivalent vertices, nodes.

• θ intersects T transversely, and the intersection points are in the interior of the

leaves of T .

• Each leaf intersects θ in at least one point.

Diagrammatically a clasper is represented by a uni-trivalent graph corresponding to

the one to be thickened. The trivalent vertices are thickened according to Figure 1. On

the univalent vertices we specify how the corresponding leaves intersect θ, and we also

indicate how the edges are twisted using markers called twists (see Figure 1).

Figure 1. Local diagrammatic representation of claspers.
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Definition 2.3. Let T be a clasper for a tangle θ. We define the degree of T

denoted deg(T ) as its number of nodes plus one, or equivalently its number of leaves

minus one. The support of T denoted supp(T ) is defined to be the set of the components

of θ that intersect T .

Definition 2.4. A clasper T for a tangle θ is said to be simple if every leaf of T

intersects θ exactly once. A leaf of a simple clasper intersecting the l-th component is

called an l-leaf.

Definition 2.5. We say that a simple clasper T for a tangle θ has repeats if it

intersects a component of θ in at least two points.

Given a disjoint union of claspers F for a tangle θ, there is a procedure called surgery

detailed in [9] to construct a new tangle denoted θF . We illustrate on the left-hand side

of Figure 2 the effect of a surgery on a clasper of degree one. Now if F contains some

claspers with degree higher than one, we first apply the rule shown on the right-hand

side of Figure 2, at each trivalent vertex: this breaks up F into a disjoint union of degree

one claspers, on which we can perform surgery.

Figure 2. Rules of clasper surgery.

Note that clasper surgery commutes with ambient isotopy. More precisely for i an

ambient isotopy and F a disjoint union of claspers for a tangle θ we have that i(θF ) =

(i(θ))i(F ). This is an elementary example of clasper calculus, which refers to the set of

operations on unions of tangles with some claspers, that allow to deform one into another

with isotopic surgery result. These operations are developed in [9], and we give in the

next section the analogous calculus up to link-homotopy.

2.2. Clasper calculus up to link-homotopy.

In the whole section, T and S denote simple claspers for a given tangle θ. We use

the notation T ∼ S, and say that T and S are link-homotopic when the surgery results

θT and θS are so. For example if i is an ambient isotopy that fixes θ, then T ∼ i(T ).

Moreover, if θT is link-homotopic to θ, we say that T vanishes up to link-homotopy and

we denote T ∼ ∅.
We begin by recalling a fundamental lemma from [5]; more precisely, the next result

is the case k = 1 of [5, Lemma 1.2], where self C1-equivalence corresponds to link-

homotopy.

Lemma 2.6 ([5, Lemma 1.2]). If T has repeats then T vanishes up to link-homotopy.

It is well known to the experts that combining Lemma 2.6 with the proofs of

Habiro’s technical results on clasper calculus [9], yields the following link-homotopy
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clasper calculus1.

Proposition 2.7 ([9, Propositions 3.23, 4.4, 4.5 and 4.6]). We have the following

link-homotopy equivalences (illustrated in Figure 3).

(1) If S is a parallel copy of T which differs from T only by one twist (positive or

negative), then S ∪ T ∼ ∅.

(2) If T and S have two adjacent leaves and if T ′ ∪ S′ is obtained from T ∪ S by

exchanging these leaves as depicted in (2) from Figure 3, then T ∪S ∼ T ′ ∪S′ ∪ T̃ ,

where T̃ is as shown in the figure.

(3) If T ′ is obtained from T by a crossing change with a strand of the tangle θ as

depicted in (3) from Figure 3, then T ∼ T ′ ∪ T̃ , where T̃ is as shown in the figure.

(4) If T ′ ∪ S′ is obtained from T ∪ S by a crossing change between one edge of T and

one of S as depicted in (4) from Figure 3, then T ∪ S ∼ T ′ ∪ S′ ∪ T̃ , where T̃ is as

shown in the figure.

(5) If T ′ is obtained from T by a crossing change between two edges of T then T ∼ T ′.

Figure 3. Basic clasper moves up to link-homotopy.

Idea of proof. The result of [9] used here are up to Ck-equivalence, that is, up

to claspers of degree up to k. The key observation is that, by construction, all such

higher degree claspers have same support as the initial ones, hence they are claspers

with repeats. Lemma 2.6 then allows to delete them up to link-homotopy. □

Remark 2.8. Lemma 2.6 combined with Proposition 2.7 gives us some further

results:

• First, statement (4) implies that if |supp(T ) ∩ supp(S)| ≥ 1 then we can realize

crossing changes between the edges of T and S.

• Moreover, if |supp(T )∩ supp(S)| ≥ 2 thanks to statement (2) we can also exchange

the leaves of T and S.

1Those moves are contained in [26] and [21] together with [5].
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• Furthermore, statement (3) allows crossing changes between T and a component

of θ in the support of T .

Indeed, in each case the clasper T̃ involved in the corresponding statement has repeats

and can thus be deleted up to link-homotopy.

The next remark describes how to handle twists up to link-homotopy.

Remark 2.9. We have the following link-homotopy equivalences (illustrated in

Figure 4).

(6) If T ′ is obtained from T by moving a twist across a node then T ∼ T ′.

(7) If T and T ′ are identical outside a neighborhood of a node, and if in this neighbor-

hood T and T ′ are as depicted in (7) from Figure 4, then T ∼ T ′.

Figure 4. How to deal with twist up to link-homotopy.

Remark 2.10. Remark 2.9 allows us to bring all the twists on a same edge and

then cancel them pairwise. Therefore we can consider only claspers with one or no twist.

Proposition 2.7 together with Remark 2.9 give us most of the necessary tools to

understand clasper calculus up to link-homotopy. The missing ingredient is the relation

IHX which we give in the following proposition.

Proposition 2.11 ([9]). Let TI , TH , TX be three parallel copies of a given simple

clasper that coincide everywhere outside a 3-ball, where they are as shown in Figure 5.

Then TI ∪ TH ∪ TX ∼ ∅. We say that TI , TH and TX verify the IHX relation.

Figure 5. The IHX relation for claspers.

3. Braids up to link-homotopy.

This section is dedicated to braids up to link-homotopy. Our main result is a rep-

resentation of the homotopy braid group, defined and studied using clasper calculus. In

the next two subsections we introduce the main tools for this result: first, the notion
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of comb-claspers for braids, that yields a normal form result up to link-homotopy, and

next, their algebraic counterpart with the family F .

3.1. Braids and comb-claspers.

Let D be the unit disk with n fixed points {pi}i≤n on a diameter δ, and I the unit

interval [0, 1]. Set also I1, . . . , In, n copies of I, and
⊔

i≤n Ii their disjoint union.

Definition 3.1. An n-component braid β = (β1, . . . , βn) is a smooth proper em-

bedding

(β1, . . . , βn) :
⊔
i≤n

Ii → D × I

such that βi(0) = (pi, 0) and βi(1) = (pπ(β)(i), 1) with π(β) some permutation of

{1, . . . , n} associated to β. We also require the embedding to be monotonic, which means

that βi(t) ∈ D × {t} for any t ∈ [0, 1]. We call (the image of) βi the i-th component of

β. We say that a braid is pure if its associated permutation is the identity.

We emphasize that the braids are here oriented from top to bottom.

The set of braids up to ambient isotopy (resp. link-homotopy) equipped with the

stacking operation forms a group: the braid group denoted by Bn (resp. the homotopy

braid group, denoted by B̃n). Elements of B̃n are called homotopy braids. The set of pure

braids up to isotopy (resp. link-homotopy) forms a subgroup of Bn (resp. B̃n) denoted

by Pn (resp. P̃n). Note that we do not require isotopy or link-homotopy to preserve the

monotonic property during the deformation.

Remark 3.2. Braids are tangles without closed components, and with boundary

and monotonic conditions. But any (pure) tangle without closed components is link-

homotopic to a (pure) braid (in the pure case, such tangles are called string links in

the literature). Thus, when regarding braids up to link-homotopy we can freely consider

them as tangles, i.e. we can forget the monotonic condition. This is useful from the

clasper point of view since clasper surgery does not respect this condition in general.

We introduce next comb-claspers and their associated notation. Consider the usual

representative 1 of the trivial n-component braid given by 1i = {pi}×I for i ∈ {1, . . . , n}.
Denote by (D× I)+ and (D× I)− the two half-cylinders determined by the plane δ× I,

where δ is the fixed diameter on D. In figures, we choose (D× I)+ to be above the plane

of the projection.

Definition 3.3. We call comb-clasper a simple clasper without repeats for the

trivial braid such that:

• Every edge is in (D × I)+.

• The minimal path running from the smallest to the largest component of the sup-

port meets all nodes.

• At each node, the edge that does not belong to the minimal path leaves “to the

left” as locally depicted in Figure 6.
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Figure 6. Local orientation at each node of a comb-clasper.

An example is given in Figure 7.

The second condition of Definition 3.3 implies that every node is related (by an edge

and a leaf) to a component of 1 that is not the smallest or the largest of the support.

Using that, we can order the support of a comb-clasper: we start with the smallest

component, then we order the components according to the order in which we meet

them along the minimal path, and finally, we end with the largest one. For example in

Figure 7 the ordered support is {1, 2, 6, 4, 5, 8}.
Once the ordered support {i1, i2, . . . , il} is fixed, the only remaining indeterminacy

in a comb-clasper is the embedding of the edges in (D × I)+. This depends on the

relative position of the edges, and on the number of twists on each of them. However,

up to link-homotopy the relative position of the edges is irrelevant (by move (5) from

Proposition 2.7). Besides, by Remark 2.10, we can always suppose that a comb-clasper

contains either one or no twist; moreover by Remark 2.9 we can freely assume that

the potential twist is located on the edge connected to the il-th component. We can

thus unambiguously (up to link-homotopy) denote by (i1, i2, . . . , il) the comb-clasper

with such a twist and by (i1, i2, . . . , il)
−1 the untwisted one; we call them respectively

twisted and untwisted comb-claspers. For example the twisted comb-clasper (126458) is

illustrated in Figure 7.

Figure 7. The twisted comb-clasper (126458).

In what follows we blur the distinction between comb-claspers and the result of their

surgery up to link-homotopy. From this point of view a comb-clasper is a pure homotopy

braid and the product (α)(α′) of two comb-claspers is the product 1(α)1(α′). In particular

according to move (1) from Proposition 2.7 the inverse of a comb-clasper (α) is given by

(α)−1.
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Definition 3.4. We say that a pure homotopy braid β ∈ P̃n given by a product

of comb-claspers β = (α1)
±1(α2)

±1 · · · (αm)±1 is:

• stacked if (αi) = (αj) for some i ≤ j implies that (αi) = (αk) for any i ≤ k ≤ j,

• reduced if it contains no redundant pair i.e. two consecutive factors are not the

inverse of each other.

If β is reduced and stacked we can then rewrite β =
∏
(αi)

νi for some integers νi and

with (αi) ̸= (αj) for any i ̸= j. Moreover, given an order on the set of twisted comb-

claspers, we say that a reduced and stacked writing is a normal form of β for this order

if (αi) ≤ (αj) for all i ≤ j.

We stress that the notion of normal form is relative to a given order on the set of

twisted comb-claspers. The following example will be relevant for Section 4.

Example 3.5. Given two twisted comb-claspers (α) = (i1 · · · il) and (α′) =

(i′1 · · · i′l′) we can choose the order (α) ≤ (α′) defined by:

• max(supp(α)) < max(supp(α′)), or

• max(supp(α)) = max(supp(α′)) and deg(α) < deg(α′), or

• max(supp(α)) = max(supp(α′)) and deg(α) = deg(α′) and i1 · · · il <lex i′1 · · · i′l,

where <lex denotes the lexicographic order. With respect to this order the normal form

of an element β ∈ P̃4 is given by 12 integers {ν12, . . . , ν1324} as follows:

β = (12)ν12(13)ν13(23)ν23(123)ν123(14)ν14(24)ν24(34)ν34

(124)ν124(134)ν134(234)ν234(1234)ν1234(1324)ν1324 .

The next result is shown by the same arguments as for Theorem 4.3 of [26]2.

Theorem 3.6 ([26, Theorem 4.3]). Any pure homotopy braid β ∈ P̃n can be

expressed in a normal form, for any order on the set of twisted comb-claspers.

3.2. Algebraic counterpart.

3.2.1. Reduced group and commutators.

For any a, b in a group we denote [a, b] := aba−1b−1.

Definition 3.7. Let G be a group generated by {x1, . . . , xn}. We define JG ◁ G

to be the normal subgroup generated by elements of the form [xi, λxiλ
−1], for all i ∈

{1, . . . , n}, and for all λ ∈ G. We call reduced quotient, the quotient G/JG and we denote

it by RG. This definition depends on the choice of the generators {x1, . . . , xn}.

In what follows we work essentially with the free group Fn on n generators x1, . . . , xn.

The reduced quotient RFn = Fn/J of the free group is called reduced free group, where

J := JFn
.

2Although a different notion of comb-clasper is used in [26], the strategy of proof is strictly the same.



04-9044 2024.06.28 (17:58)

764(92)

764 E. Graff

Definition 3.8. A commutator in x1, . . . , xn of weight k (k ≥ 1) is an element of

Fn defined recursively, as follows:

• The commutators of weight one are x1, . . . , xn.

• The commutators of weight k are words [C1, C2] where C1, C2 are commutators

verifying k = wg(C1) + wg(C2) where wg(C) denotes the weight of C.

Definition 3.9. We denote Occi(C) = r and we say that xi occurs r times in a

commutator C if one of the following holds:

• If C = xj , then r = 1 if i = j and r = 0 if i ̸= j.

• If C = [C1, C2], then r = Occi(C1) + Occi(C2).

We say that a commutator C has repeats if Occi(C) > 1 for some i. We call support of

the commutator C, the set of indices i such that Occi(C) > 0 and we denote it supp(C).

The following is a reformulation of Definition 3.7 that is used throughout the paper.

Proposition 3.10 ([17, Proposition 3]). The subgroup J is generated by commu-

tators in x1, . . . , xn with repeats. Hence these commutators are trivial in the reduced free

group.

The notion of basic commutators was first introduced in [11] and was further studied

in [18], [10], [19] to describe the lower central series of the free group. It was then

naturally adapted in [17] to the framework of the reduced free group. In the next

definition we set a well chosen family of commutators. This family will replace reduced

basic commutators from [17] and will follow us throughout the whole paper.

Definition 3.11. Let us define the following family of commutators without re-

peats in RFn:

F =
{
[i1, . . . , il]

∣∣ i1 < ik, 2 ≤ k ≤ l
}
l≤n

.

Here, we use the notation [i1, i2, . . . , il] := [[· · · [[xi1 , xi2 ], xi3 ], . . . , xil−1
], xil ]. This is a

finite set and we can thus choose an arbitrary order on it, F = {[α1], [α2], . . . , [αm]}.

Example 3.12. For two commutators [α] = [i1 · · · il] and [α′] = [i′1 · · · i′l′ ] we can

choose the order given by [α] ≤ [α′] if:

• wg(α) < wg(α′), or

• wg(α) = wg(α′) and i1 · · · il <lex i′1 · · · i′l.

With respect to this order the normal form of an element ω ∈ RF3 = ⟨x1, x2, x3⟩ is

given by 8 integers {e1, . . . , e8} as follows:

ω = [1]e1 [2]e2 [3]e3 [12]e4 [13]e5 [23]e6 [123]e7 [132]e8 .
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The following theorem is a kind of reduced analogue of Hall’s basis theorem [10,

Theorem 11.2.4]. It is to be compared with [17, Proposition 6], where a different family

of commutators is used, see Remark 3.15.

Theorem 3.13. For any word ω ∈ RFn there exists a unique ordered set of integers

{e1, . . . , em} associated to the ordered family of commutators F = {[α1], [α2], . . . , [αm]}
such that

ω = [α1]
e1 [α2]

e2 · · · [αm]em .

Proof. We first show for ω ∈ RFn the existence of a decomposition ω =∏
α∈F [α]

eα . We recall that two commutators commute up to commutators of strictly

higher weight, and any commutator of weight strictly bigger than n has repeats and is

then trivial according to Proposition 3.10. Thus it is sufficient to express any commuta-

tor C as a product of commutators in F . To do so we use the three following relations

in RFn.

(i) [X,Y ]−1 = [Y,X] = [X−1, Y ] = [X,Y −1] with X,Y commutators.

(ii) [X, [Y, Z]] = [[X,Y ], Z] · [[X,Z], Y ]−1 with X,Y, Z commutators.

(iii) [UV,X] = [U,X][V,X] with U, V commutators such that supp(U) ∩ supp(V ) ̸= ∅.

Relation (i) allows us to move the generator xi1 with i1 = min(supp(C)) at the desired

position; we obtain C = [· · · [xi1 , C1], . . . , Ck]
±1. Relations (i) and (ii) are used to de-

crease the weight of the commutator Ci in this expression. We start with C1 = [C ′
1, C

′
2]

supposing its weight is bigger than one, and we get:

C = [· · · [xi1 , [C
′
1, C

′
2]], . . . , Ck]

±1

= [· · · [[xi1 , C
′
1], C

′
2] · [[xi1 , C

′
2], C

′
1]

−1, . . . , Ck]
±1

= [· · · [[xi1 , C
′
1], C

′
2], . . . , Ck]

±1[· · · [[xi1 , C
′
2], C

′
1]

−1, . . . , Ck]
±1

= [· · · [[xi1 , C
′
1], C

′
2], . . . , Ck]

±1[· · · [[xi1 , C
′
2], C

′
1], . . . , Ck]

∓1.

Since wg(C ′
1) < wg(C) and wg(C ′

2) < wg(C) we know that by iterating this oper-

ation on the new terms we can rewrite C as a product of commutators of the form

[· · · [[xi1 , xi2 ], C2], . . . , Ck]. We finish by repeating the process on C2, . . . , Ck.

To prove the unicity of the decomposition we work with the unit group Un of the

ring of power series in non-commuting variables X1, . . . , Xn. More precisely we consider

its quotient Ũn in which the monomials Xα = Xα1Xα2 · · ·Xαn vanish when they have

repetition (i.e. αi = αj for some i ̸= j). The elements in Ũn are of the form 1 + Q

with Q a sum of monomials of degree higher than one, and (1 + Q)−1 = 1 + Q̄ with

Q̄ = −Q+Q2 −Q3 + · · ·+ (−1)nQn. Now we can define the reduced Magnus expansion

M̃ . This is a homomorphism from the reduced free groupRFn to Ũn, defined by M̃(xi) =

1 +Xi. The following computation shows that M̃ respects the relations of the reduced

free group, meaning that M̃([xi, λxiλ
−1]) = 1 for any generator xi and any λ in RFn:
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M̃(λxiλ
−1)M̃(xi) =

(
M̃(λ)(1 +Xi)M̃(λ−1)

)
(1 +Xi)

= 1 +Xi + M̃(λ)XiM̃(λ−1)

= (1 +Xi)
(
M̃(λ)(1 +Xi)M̃(λ−1)

)
= M̃(xi)M̃(λxiλ

−1).

An easy induction on the weight l of [α] ∈ F gives the following:

Claim 3.14. For every [α] = [α1, . . . , αl] ∈ F, M̃([α]) = 1+Xα+Ql(Xα1 , . . . , Xαl
)

where Ql is a sum of monomials of degree l = wg([α]) not starting by Xα1 , and where

each variable Xαi for i ∈ {1, . . . , l} appears exactly once.

Now, we take ω =
∏

α∈F [α]
eα =

∏
α∈F [α]

e′α two decompositions of an element

ω ∈ RFn. We prove by induction on the weight of [α] that eα = e′α for any commutator

[α] ∈ F . Suppose that eα = e′α for any [α] of weight < k and compare the coefficients of

monomial Xα in both M̃(
∏

α∈F [α]
eα) and M̃(

∏
α∈F [α]

e′α) for a fixed commutator [α] of

degree k. According to Claim 3.14, commutators of weight > k do not contribute to this

coefficient and the only contributing weight k commutator is [α] itself with coefficient eα
(resp. e′α). Commutators of weight < k may also contribute to this coefficient but the

induction hypothesis ensures that the contribution is the same in both expressions. This

proves that eα = e′α for any [α] of weight k and concludes the proof. □

Remark 3.15. Unlike Levine’s proof of [17, Proposition 6], this proof does not

require Hall’s basis theorem [10, Theorem 11.2.4].

Definition 3.16. To the ordered set of commutators F = {[α1], . . . , [αm]} in

RFn we associate a Z-module V formally generated by {α1, . . . , αm}. We also define the

linearization map ϕ : RFn → V by:

ϕ(ω) = e1α1 + · · ·+ emαm where [α1]
e1 · · · [αm]em is the normal form of ω.

We keep calling “commutators” the generators of V and we define the support and the

weight of α to be those of [α].

We stress that the normal form and the linearization map ϕ both depend on the

ordering on F .

Lemma 3.17. The Z-module V is of rank,

rk(V) =
∑

0≤l≤k<n

k!

l!
.

Moreover we can decompose V into a direct sum of submodules Vi generated by the com-

mutators of weight i. Then we obtain that :

rk(Vi) =
∑

i−1≤k<n

k!

(k − i+ 1)!
.
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Proof. The first equality comes by counting the cardinality of F . To do so we first

count the elements [α] with first term α1 = k. To choose α2, α3, . . . , αl with 0 ≤ l < n−k

we only have to respect the condition that α1 < αi. Thus they can be freely chosen in

{k + 1, . . . , n} and therefore:

rk(V) =
n∑

k=1

n−k∑
l=0

(n− k)!

(n− k − l)!
=

n−1∑
k=0

k∑
l=0

k!

(k − l)!
=

n−1∑
k=0

k∑
l=0

k!

l!
.

For the second equality, we follow the same kind of reasoning, but this time α1 = k must

be chosen in {1, . . . , n− i+1}, then we choose the i− 1 last numbers α2, . . . , αi without

restriction in {k + 1, . . . , n}. We obtain:

rk(Vi) =

n−i+1∑
k=1

(n− k)!

(n− k − i+ 1)!
=

n−1∑
k=i−1

k!

(k − i+ 1)!
. □

3.2.2. Braid groups.

In this section we use the usual Artin braid generators σi for i ∈ {1, . . . , n − 1}
illustrated in Figure 8 and the usual pure braid generators Aij = σj−1σj−2 · · ·σi+1σ

2
i σ

−1
i+1

· · ·σ−1
j−2σ

−1
j−1 for 1 ≤ i < j ≤ n illustrated in Figure 9.

1 i i+ 1 n

Figure 8. The Artin generator σi.

1 i i+ 1 i− 1 j n

Figure 9. The pure braid generator Aij .

The following theorem is based on the result of [6].

Theorem 3.18. Let J ◁ Bn denote the normal subgroup generated by all elements

of the form [Aij , λAijλ
−1] where λ belongs to Pn. We obtain the homotopy braid group

B̃n as the quotient :

B̃n = Bn/J.

Proof. In [6], the homotopy braid group B̃n appears as the quotient Bn/J
′,

where J ′ ◁ Bn is the normal subgroup generated by elements of the form [Aij , λAijλ
−1]

where λ belongs to the normal subgroup generated by {A1,j , . . . , Aj−1,j}. Our result

relies on the observation that J = J ′. Obviously J ′ ⊂ J thus we only need to show that

J ⊂ J ′. This is equivalent to showing that for any Λ ∈ Pn, Aij and ΛAijΛ
−1 commute

up to link-homotopy. Let us remind that Aij is the surgery result 1(ij) of the comb-

clasper (ij). Thus the conjugate ΛAijΛ
−1 is the surgery result of the clasper C = ι(ij),

where ι is the ambient isotopy sending ΛΛ−1 to the trivial braid 1. Now it is clear that

supp(C) = supp(ij), hence according to Remark 2.8, (ij)C ∼ C(ij) and the result is

proved. □
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In order to obtain a similar result for the pure homotopy braid group we need the

following.

Lemma 3.19. The subgroup J ◁ Bn normally generated in Bn by elements of the

form [Aij , λAijλ
−1] for λ ∈ Pn, seen as a subgroup of Pn, coincides with the normal

subgroup of Pn generated by elements of the form [Aij , λAijλ
−1] for λ ∈ Pn.

Proof. For k ∈ {1, . . . , n− 1}, 1 ≤ i < j ≤ n and λ ∈ Pn we compute:

σk[Aij , λAijλ
−1]σ−1

k =



[
Ai+1j , λ1Ai+1jλ

−1
1

]
if i = k and j ̸= k + 1,[

Ai+1j , λ2Ai+1jλ
−1
2

]
if j = k,

Akk+1

[
Ai−1j , λ3Ai−1jλ

−1
3

]
A−1

kk+1 if i = k + 1,

Akk+1

[
Aij−1, λ4Aij−1λ

−1
4

]
A−1

kk+1 if i ̸= k and j = k + 1,[
Aij , λAijλ

−1
]

otherwise,

with λi ∈ Pn for i ∈ {1, 2, 3, 4}. Therefore the conjugates σk[Aij , λAijλ
−1]σ−1

k are

always conjugates of [Ai′j′ , λ
′Ai′j′(λ

′)−1] in Pn for some 1 ≤ i′ < j′ ≤ n and λ′ ∈ Pn and

the proof is done. □

Corollary 3.20. Let J ◁ Pn be the normal subgroup generated by elements of the

form [Aij , λAijλ
−1] for any λ ∈ Pn. We obtain the pure homotopy braid group P̃n as the

following quotient :

P̃n = Pn/J = RPn.

This induces the following presentation for P̃n :

P̃n = ⟨Aij

∣∣∣∣∣∣∣∣
[Ars, Aij ] = 1 r < s < i < j or r < i < j < s,

[Ars, Arj ] = [Arj , Asj ] = [Asj , Ars] r < s < j,

[Ari, Asj ] = [[Aij , Arj ], Asj ] r < s < i < j,[
Aij , λAijλ

−1
]
= 1 i < j and λ ∈ P̃n

⟩.
Proof. The quotient statement is a direct consequence of Proposition 3.18 and

Lemma 3.19. The presentation is obtained from that of [23, Theorem 3.8] re-expressed

in terms of commutator and using the relation [Ars, A
−1
ij ] = [Ars, Aij ]

−1 which holds in

P̃n. □

We next recall two classical representations of braid groups that are known to be

faithful (see [1] and [8] for more details).

Definition 3.21. We call Artin representation the homomorphism ρ : Bn →
Aut(Fn) defined as follows:

ρ(σi) :


xi 7→ xi+1,

xi+1 7→ x−1
i+1xixi+1,

xk 7→ xk if k /∈ {i, i+ 1}.
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Similarly the homomorphism ρ̃ : B̃n → Aut(RFn) defined by the same expressions is

called the homotopic Artin representation.

3.3. A linear faithful representation of the homotopy braid group.

3.3.1. Algebraic definition.

Let GL(V) be the general linear group of the Z-module V introduced in Defini-

tion 3.16. In order to define the linear representation γ : B̃n → GL(V), we state the

following preparatory lemma. Let us denote by Nj the subgroup normally generated by

xj in RFn for j ∈ {1, . . . , n}; note that Nj is an abelian group.

Lemma 3.22. Let β ∈ B̃n be a homotopy braid. For any commutator C ∈ Nj, if

the product [α1]
e1 · · · [αm]em is a normal form of ρ̃(β)(C) then we have that ei = 0 if

[αi] /∈ Nπ−1(β)(j). Here π−1(β)(j) is the image of j under the permutation induced by

β−1.

In other words in the image by ρ̃(β) of C ∈ Nj , xπ−1(β)(j) occurs in each factor of

the normal form.

Proof. The proof comes from the fact that any element of Nj is sent by ρ̃(β) to

an element of Nπ−1(β)(j). This is clear for the Artin generators σi and so it is for any

braid β. Thus we conclude using the fact that the normal form ω = Ce1
1 · · ·Cem

m of any

element ω ∈ Nk, for any k contains only commutators in Nk. To see this we use the

homomorphism of RFn defined by xk 7→ 1 which sends the normal form of ω to 1. □

Recall from Definition 3.16 the linearization map ϕ : RFn → V.

Theorem 3.23. The map

γ : B̃n → GL(V)

defined for β ∈ B̃n and [α] ∈ F by γ(β)(α) = ϕ ◦ ρ̃(β)([α]) is a well defined homomor-

phism. Moreover γ does not depend on the chosen order on F .

Proof. Since ϕ is not a homomorphism in general, it is not clear that γ is a

representation. Yet we do have that γ(ββ′) = γ(β)γ(β′) for any two homotopy braids

β and β′. Let [α] be a commutator in F and α its corresponding commutator in V.
We choose some j ∈ supp([α]) so that [α] is in Nj . Set γ(β′)(α) =

∑
i eiαi for some

commutators αi ∈ V associated to the commutators [αi] ∈ F and some integers ei. Then

we have that

γ(ββ′)(α) = ϕ ◦ ρ̃(β)ρ̃(β′)([α]) = ϕ ◦ ρ̃(β)

(∏
i

[αi]
ei

)
= ϕ

(∏
i

ρ̃(β)([αi])
ei

)
.

Now, using Lemma 3.22 we know that [αi] is inNπ−1(β′)(j) for any i. Besides, Lemma 3.22

implies that any commutator in the normal form of ρ̃(β)([αi]) is in the abelian group

Nπ−1(ββ′)(j) for any i. But note that for C1, . . . , Ck a collection of commutators in F
such that [Ci, Cj ] = 1 for any i, j we have that ϕ(C1 · · ·Ck) = ϕ(C1) + · · · + ϕ(Ck).

Hence ϕ behaves like a homomorphism on the product
∏

i ρ̃(β)([αi])
ei , and finally,
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ϕ

(∏
i

ρ̃(β)([αi])
ei

)
=
∑
i

eiϕ
(
ρ̃(β)([αi])

)
=
∑
i

eiγ(β)(αi) = γ(β)

(∑
i

ei(αi)

)
= γ(β)γ(β′)(α).

This shows that γ is a well defined homomorphism.

To prove the independence on the chosen order on F we use Lemma 3.22 again.

For any β ∈ B̃n and any [α] ∈ F , all the commutators in the normal form of ρ̃(β)([α])

commute with each other. In particular if we set two orderings {[α1], . . . , [αm]} and

{[ασ(1)], . . . , [ασ(m)]} on F then the two associated normal forms

ρ̃(β)([α]) = [α1]
e1 · · · [αm]em = [ασ(1)]

e′σ(1) · · · [ασ(m)]
e′σ(m)

satisfy ei = e′i for any i and therefore ϕ ◦ ρ̃ = ϕ′ ◦ ρ̃ for the two linearization maps ϕ and

ϕ′ associated to the orderings. □

Remark 3.24. The homomorphism γ is in fact injective. Since ϕ is clearly injec-

tive, this can be shown using the injectivity of ρ̃, proved in [8]. However we will give

below another proof of this result in Theorem 3.31 using clasper calculus, which in turn

reproves the injectivity of ρ̃. Furthermore our approach by clasper calculus allows for

explicit computations of the representation, as shown in the next section.

3.3.2. Clasper interpretation.

We first give a topological interpretation of the Artin (resp. homotopy Artin) rep-

resentation. We can see the free group Fn (resp. reduced free group RFn) on which Bn

(resp. B̃n) acts as the fundamental group (resp. the reduced fundamental group) of the

complement of the n-component trivial braid. Therefore an element of Fn (resp. RFn)

can also be seen as the homotopy (resp. the reduced homotopy3) class of an (n + 1)-th

component in this complement. On the diagram, we place this new strand to the right

of the braid and we label it by “∞”. Thus, the generators xi of Fn (resp. RFn) are

given by the pure braids Ai∞ shown in Figure 10, which can be reinterpreted with the

comb-claspers (i,∞) depicted in the same figure. There and in subsequent figures, we

simply represent with a circled “∞” the leaf intersecting the ∞-th component.

Figure 10. Pure braid and clasper interpretations of the generator xi.

In this context the image ρ(β) of an element β ∈ Bn (resp. B̃n) is given on a generator

xi ∈ Fn (resp. RFn) by considering the conjugation β1(i,∞)β−1 illustrated in Figure 11.

Then we apply an isotopy, transforming β1β−1 into 1. By doing so the clasper (i,∞) is

3Here by reduced homotopy class, we mean the image in the reduced quotient of the homotopy class
of an element.
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Figure 11. Clasper interpretation of the Artin representation.

deformed into a new clasper which we are able to reinterpret as an element of Fn or RFn.

More precisely in the link-homotopic case we have a nice correspondence between the

family F and the comb-claspers with ∞ in their support, by the following proposition.

Proposition 3.25. Let (α) = (i1 · · · in−1∞) and (α′) = (i1 · · · in−1in∞) be two

comb-claspers. Then we have the relation :

(α′) ∼ [(α), (in∞)] = (α) · (in∞) · (α)−1 · (in∞)−1.

For example in Figure 12 we illustrate the equivalence (1254∞) ∼ [(125∞), (4∞)].

Figure 12. The comb-clasper (1254∞) is link-homotopic to the commutator

[(125∞), (4∞)].

Proof. Consider the product of comb-claspers α · (in∞) · α−1 · (in∞)−1 (as for

example on the right-hand side of Figure 12). First we use move (2) from Proposition 2.7

to exchange the∞-th leaves of (in∞) and (α)−1; this move creates an extra comb-clasper,

which is exactly (α′). Now by Remark 2.8 we can freely move (α′) and finish exchanging

the edges of (αn∞) and (α)−1, thus obtaining the product (α) · (α)−1 · (α′) · (in∞) ·
(in∞)−1 ∼ (α′). □

By iterating this proposition we obtain a correspondence between the commuta-

tors [α] ∈ F (or α ∈ V) and the comb-claspers (α,∞). For example the equivalence

(1254∞) ∼ [[[(1∞), (2∞)], (5∞)], (4∞)] corresponds to [1254] = [[[x1, x2], x5], x4] in

RFn.
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In this way, we obtain an explicit procedure to compute our representation γ using

clasper calculus, as follows. As illustrated in the proof of Theorem 3.26 below, the

computation of γ(β)(α) with γ the representation, β ∈ B̃n and α ∈ V, goes in 3 steps:

Step 1: Consider the conjugate of the comb-clasper (α,∞) by the braid β.

Step 2: Use clasper calculus to re-express this conjugate as an ordered union of comb-

claspers with ∞ in their support (the order comes from the order on F).

Step 3: The number of parallel copies of a given comb-clasper in this product is the

coefficient of the associated commutator in γ(β)(α).

We apply in Theorem 3.26 this procedure4 for each generator σi ∈ B̃n and each commu-

tator in V. The image of commutator (i1, i2, . . . , il) := ϕ([i1, i2, . . . , il]) ∈ V by the map

γ(σi) depends on the position of the indices i and i+ 1 in the sequence i1, i2, . . . , il.

Theorem 3.26. For suitable sequences I, J, K in {1, . . . , n}\{i, i + 1}, I ̸= ∅,
we have :

γ(σi) :



(I) 7→ (I) (a)

(J, i,K) 7→ (J, i+ 1,K) (b)

(i+ 1,K) 7→ (i,K) + (i, i+ 1,K) (c)

(I, i+ 1,K) 7→ (I, i,K) + (I, i, i+ 1,K)− (I, i+ 1, i,K) (d)

(I, i, J, i+ 1,K) 7→ (I, i+ 1, J, i,K) (e)

(I, i+ 1, J, i,K) 7→ (I, i, J, i+ 1,K) (f)

(i, J, i+ 1,K) 7→
∑

J′⊆J (−1)|J
′|+1(i, J ′, i+ 1, J\J ′,K) (g)

where in (g), the sum is over all (possibly empty) subsequences J ′ of J , and J ′ denotes

the sequence obtained from J ′ by reversing the order of its elements, see Example 3.27.

Example 3.27. If J = (J1, J2, J3) and K = ∅ in (g), then γ(σi) maps (i, J, i+1)

to:

− (i, i+ 1, J1, J2, J3) + (i, J1, i+ 1, J2, J3) + (i, J2, i+ 1, J1, J3) + (i, J3, i+ 1, J1, J2)

− (i, J2, J1, i+ 1, J3)− (i, J3, J1, i+ 1, J2)− (i, J3, J2, i+ 1, J1) + (i, J3, J2, J1, i+ 1).

The proof below explains how this follows from the IHX relations of Figure 17.

Proof of Theorem 3.26. Following the procedure given above, we consider the

conjugate σ−1
i (α,∞)σi and apply clasper calculus to turn it into a union of comb-claspers.

For (a) it is clear that (I,∞) commutes with σi, passing over or next to it. The

computation of (b) is given by a simple isotopy of the braid shown in Figure 13.

The proofs of (c) and (d) are similar and are given in Figures 14 and 15 respectively.

There, the first equivalence is an isotopy, and the second one is given by move (2) from

Proposition 2.7. For (d) there is a further step given by an IHX relation.

For (e) and (f) we apply the same isotopy as Figure 13 on components i and i+ 1,

thus interchanging (I, i, J, i+1,K) and (I, i+1, J, i,K). Note that we also need a crossing

4A program that computes explicitly the representation γ is available on [7].
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Figure 13. Computation of (b).

Figure 14. Computation of (c).

Figure 15. Computation of (d).

change between the (i+1)-th component and a clasper edge, which is possible according

to Remark 2.8.

Proving (g) is the last and hardest part and goes in two steps. The first step is

illustrated in Figure 16: we proceed as before with an isotopy and a crossing change,

then we use move (7) of Remark 2.9. This turns σi(i, J, i+1,K,∞)σ−1
i into a new clasper

which is not a comb-clasper.

Figure 16. Turning σi(i, J, i+ 1,K,∞)σ−1
i into a new clasper.
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In the second step, we use the IHX relations repeatedly to turn this new clasper into

a product of comb-claspers. This is illustrated in Figure 17 where J = (J1, J2, J3). We

conclude by simplifying the twists with Remark 2.10.

Figure 17. Iterated IHX relations.

□

Example 3.28. We illustrate Theorem 3.26 on the 3-component homotopy braid

group B̃3. To do so, we set (1), (2), (3), (12), (13), (23), (123), (132) to be the generators

of V, with the order of Example 3.12, and we compute γ on the Artin generators σ1, σ2:

γ(σ1)(1) = (2), γ(σ2)(1) = (1),

γ(σ1)(2) = (1) + (12), γ(σ2)(2) = (3),

γ(σ1)(3) = (3), γ(σ2)(3) = (2) + (23),

γ(σ1)(12) = −(12), γ(σ2)(12) = (13),

γ(σ1)(13) = (23), γ(σ2)(13) = (12) + (123)− (132),

γ(σ1)(23) = (13) + (123), γ(σ2)(23) = −(23),

γ(σ1)(123) = −(123), γ(σ2)(123) = (132),

γ(σ1)(132) = −(123) + (132), γ(σ2)(132) = (123).

That gives us the following matrices:

γ(σ1) =



0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 −1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 −1 −1

0 0 0 0 0 0 0 1


, γ(σ2) =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 −1 0 0

0 0 0 0 1 0 0 1

0 0 0 0 −1 0 1 0


.
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The global shape of these matrices was predicted by Theorem 3.26. Indeed in general

we have the following.

Proposition 3.29. For β ∈ B̃n a homotopy braid, the matrix associated to γ(β)

in the basis F , endowed with the order of Example 3.12, is given by a lower triangular

block matrix of the following form :
B1,1 0 · · · 0

B2,1 B2,2 · · · 0
...

...
. . .

...

Bn,1 Bn,2 · · · Bn,n


where Bi,i is a finite order matrix of size rk(Vi) =

∑n−1
i−1

k!
(k−i+1)! which is the iden-

tity when β is pure. Moreover B1,1 corresponds to the left action by permutation

k 7→ π−1(β)(k), and B2,2 corresponds to the left action on the set {(k, j)}k<j given

by :

(k, j) 7→

{ (
π−1(β)(k), π−1(β)(j)

)
if π−1(β)(k) < π−1(β)(j),

−
(
π−1(β)(j), π−1(β)(k)

)
if π−1(β)(j) < π−1(β)(k).

Proof. The triangular shape is a direct consequence of Theorem 3.26. Indeed,

the chosen order respects the weight, and Theorem 3.26 shows that γ maps a commutator

of weight k to a sum of commutators of weight at least k. Proposition 3.17 gives the

size of the square diagonal blocks Bi,i. The fact that these diagonal blocks are the

identity when β is a pure braid may need some more explanations. We only need to

show this result on the generators β = Ai,j = 1(i,j). By Proposition 2.7, conjugating

(α,∞) by (i, j) may only create a clasper (α′,∞) of strictly higher degree. This shows

that γ(β)(α) = (α) + (strictly higher weight commutators) so that Bi,i is the identity.

The block matrix B1,1 describes the action on degree one comb-claspers modulo claspers

of higher degree: the claim follows on an easy verification on the generators σi. Similarly

the claim on the block matrix B2,2 amounts to focusing on degree two comb-claspers. □

In order to prove the injectivity of γ we need the following preparatory lemma.

Lemma 3.30. Let (i1, . . . , il) be a comb-clasper. We have

γ
(
1(i1,...,il)

)
(il) = (il)− (i1, . . . , il),

where, on the right-hand side, (i1, . . . , il) now denotes the corresponding commutator

in V.

Proof. Consider the product (i1, . . . , il)(id,∞)(i1, . . . , il)
−1 and re-express it

with only comb-claspers with ∞ in their support. To do so, as illustrated in Figure 18,

we apply move (2) from Proposition 2.7 on the leaves on the id-th component, which in-

troduces the comb-clasper (i1, . . . , il,∞)−1, and we simplify (i1, . . . , il) and (i1, . . . , il)
−1.

□
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Figure 18. Proof of Lemma 3.30.

We can now state the injectivity of the representation γ.

Theorem 3.31. The representation γ : B̃n 7→ GL(V) is injective.

Proof. Let β ∈ B̃n be such that γ(β) = Id. First, Proposition 3.29 imposes that

β is a pure braid; indeed the block B1,1 must be the identity, which means that the

permutation π(β) is trivial.

According to Theorem 3.6 we can consider a normal form for β:

β =
∏

(α)να .

Let I ⊂ {1, . . . , n} be a sequence of indices with largest index m. Let also VI be the

subspace of V spanned by commutators with support included in I. We can then define

the associated projection pI : V → VI , and its composition with the restriction of γ on

VI , denoted by γI := pI ◦ γ|VI
. Note that it corresponds to keeping only the components

with index in I. It is clear using Proposition 2.7 that γ(P̃n)(V \ VI) ⊂ V \ VI , thus for

β1, β2 ∈ P̃n we have that γI(β1β2) = γI(β1)γI(β2). Moreover γI(1
(α)) = Id for any

comb-clasper (α) with supp(α) ̸⊂ I. Hence γI(β) = γI(β
′) for β′ defined by:

β′ =
∏

supp(α)⊂I

(α)να .

Now we show by strong induction on the degree of (α) that να = 0. For the base

case we consider I of the form I = {i, m}. Using Lemma 3.30 we obtain:

γI(β
′)(m) = γI

(
1(im)νim

)
(m)

= (m)− νim · (im).

Because β ∈ Ker(γ), we have that γI(β)(m) = (m), and this implies that να = 0 for any

(α) of degree one. To prove that να = 0 for any (α) of degree k we take I of length k+1

and using the induction hypothesis, we get then:

β′ =
∏

supp(α)=I

(α)να .
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Thus thanks to Lemma 3.30 we finally obtain:

γI(β
′)(m) = (m)−

∑
supp(α)=I

να · (α).

Because β ∈ Ker(γ) we have that γI(β)(m) = (m), and this implies να = 0 for any (α)

of support I. Repeating the argument for any I ⊂ {1, . . . , n} of length k+1, we get that

να = 0 for any (α) of degree k, which concludes the proof. □

Corollary 3.32. The normal form is unique in B̃n, i.e. if β =
∏
(α)να =

∏
(α)ν

′
α

are two normal forms of β for a given order on the set of twisted comb-claspers, then

να = ν′α for any (α).

Proof. The proof follows closely the previous one. As before for a given I ⊂
{1, . . . , n} we have γI(β) = γI(β

′) for β′ defined by:

β′ =
∏

supp(α)⊂I

(α)να =
∏

supp(α)⊂I

(α)ν
′
α .

We show again by strong induction on the degree that να = ν′α. The base case is strictly

similar, but for the inductive step one cannot in general write β′ with only comb-claspers

with support I. However by Proposition 2.7 a comb-clasper (α) with supp(α) = I

commutes with any comb-clasper (α′) up to comb-claspers with support not included in

I. Hence γI(1
(α)) commutes with γI(1

(α′)) for any two comb-claspers (α′) and (α) such

that supp(α) = I. In particular we get:

γI(β
′)(m) = γI

 ∏
supp(α)⊊I

(α)να

 ◦ γI

 ∏
supp(α)=I

(α)να

 (m)

= γI

 ∏
supp(α)⊊I

(α)ν
′
α

 ◦ γI

 ∏
supp(α)=I

(α)ν
′
α

 (m).

Since comb-claspers (α) with supp(α) ⊊ I have degree < k − 1 where k is the length

of I, by induction hypothesis we can simplify the first factor in each expression. By

Lemma 3.30 we compute the second term thus obtaining:

(m)−
∑

supp(α)=I

να · (α) = (m)−
∑

supp(α)=I

ν′α · (α),

and the proof is complete. □

Remark 3.33. Corollary 3.32 shows that the numbers να of parallel copies of

each comb-clasper in a normal form are a complete invariant of pure braids up to link-

homotopy. We call those numbers the clasp-numbers. Other well known complete homo-

topy braid invariants are the Milnor numbers [8]. As a matter of fact, Milnor numbers

can be used, using the techniques of [26], to give another proof of Corollary 3.32. In this

paper we will not try to make explicit the relation between clasp-numbers and Milnor

numbers, since we work solely with clasp-numbers.
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4. Links up to link-homotopy.

In the following of the paper we will focus on the study of links up to link-homotopy.

More precisely we will describe in terms of clasp-numbers variation when two normal

forms have link-homotopic closures.

The main purpose of this section is to use clasp-numbers, defined in Remark 3.33

above, to provide an explicit classification of links up to link-homotopy. In this way we

recover results of Milnor [22] and Levine [17] for 4 or less components, and extend them

partially for 5 components. To do so we first revisit in terms of claspers the work of

Habegger and Lin [8].

Remark 4.1. Kotorii and Mizusawa also considered in [16] the question of using

clasper theory to classify 4-component links up to link-homotopy. They use a different

kind of normal form, arranged along a tetrahedron shape, adapted to the 4-component

case. The main difference with the present work, however, is that their result makes direct

use of Levine’s classification. Here we instead reprove the latter using Theorem 4.4 and

clasper calculus. Our approach is likely to extend to the general case: as an illustration

of this fact, we treat the algebraically split 5-component case at the end of this section.

4.1. Habegger–Lin’s work revisited.

There is a procedure on braids called closure, that turns a braid into a link in S3.

The question is to determine when two braids have link-homotopic closures. Let us

first recall from [8, Theorem 1.7 and Corollary 1.11] that for any integer n we have the

decomposition:

P̃n = P̃n−1 ⋉RFn−1

where the first term corresponds to the braid obtained by omitting a given component,

and the second term is the class of this component as an element of the reduced funda-

mental group of the disk with n− 1 punctures.

To answer the question, Habegger and Lin in [8] study an action of P̃2n on P̃n−1 ⋉
RFn−1, which leads them to considering certain elementary operations (x̄i, x̄i)k, (xi, xi)k
and (x̄i, xi)k, whose definition we recall here in terms of claspers.

Definition 4.2. Let β ∈ P̃n be a pure homotopy braid, and let i, k be two distinct

integers in {1, . . . , n}.

• (x̄i, x̄i)k(β) is the pure homotopy braid β∆ ·1(ik)−1

, where ∆ and (ik)−1 are degree

one claspers as shown in the left-hand side of Figure 19.

• (xi, xi)k(β) is the pure homotopy braid 1(ik) · β∆′
, where ∆′ and (ik)−1 are degree

one claspers as shown in the central part of Figure 19.

• (x̄i, xi)k(β) is the pure homotopy braid 1(ik)β · 1(ik)−1

, where (ik) and (ik)−1 are

degree one claspers as shown in the right-hand side of Figure 19.

Remark 4.3. In fact, in [8] those operations are only defined for k = n, but the

definitions extend naturally for any k ̸= i. Moreover, Figure 2.8 in [8] does not correspond
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Figure 19. The elementary operations (x̄i, x̄i)k, (xi, xi)k, and (x̄i, xi)k.

exactly to Figure 19, due to convention choices. Firstly, in [8] braids are oriented from

bottom to top whereas we orient them from top to bottom. Secondly, here the basepoint

of the second term in the decomposition P̃n = P̃n−1 ⋉RFn−1 is taken above the n − 1

punctures, and not under the n− 1 punctures as in [8].

We state now the main classification theorem of links up to link-homotopy.

Theorem 4.4 ([8], [12]). Let β, β′ ∈ P̃n be two pure homotopy braids. The

closures of β and β′ are link-homotopic, if and only if there exists a sequence β =

β0, β1, . . . , βn = β′ of elements of P̃n such that βj+1 = (x̄i, x̄i)k(βj) for some i ̸= k

in {1, . . . , n}.

Proof. Firstly, [8, Lemma 2.11] and the proof of [8, Theorem 2.13] imply that

two pure homotopy braids whose closures are link-homotopic are related by a sequence of

operations (x̄i, x̄i)k, (xi, xi)k and (x̄i, xi)k. Moreover, computations in [8, p. 413] show

that operations (x̄i, x̄i)k generate operations (xi, xi)k. Finally, Hughes in [12] showed

that operations (x̄i, xi)k are also realized by operations (x̄i, x̄i)k. □

4.2. Link-homotopy classification of links with a small number of com-

ponents.

This section is dedicated to the explicit classification of links up to link-homotopy.

The starting point of the strategy is Theorem 4.4 which allows us to see links up to link-

homotopy as pure homotopy braids up to operations (x̄i, x̄i)k with i ̸= k in {1, . . . , n}.
Moreover with Corollary 3.32 we show that a braid is uniquely determined by its normal

form, encoded by a sequence of integers: the clasp-numbers. The goal is then to determine

how the normal form, or equivalently the clasp-numbers, vary under operations (x̄i, x̄i)k.

By using clasper calculus, we recover in this way the link-homotopy classification results

from Milnor [22] and Levine [17] in the case of links with at most 4 components. We

then apply these techniques to the 5-component algebraically split case.

In order to use Corollary 3.32, we need to fix an order on the set of twisted comb-

claspers. In the rest of the paper we fix the following order, which is inspired from

Example 3.12. For two twisted comb-claspers (α) = (i1 · · · il) and (α′) = (i′1 · · · i′l′) we

set (α) ≤ (α′) if:

• deg(α) < deg(α′), or

• deg(α) = deg(α′) and i1 · · · il <lex i′1 · · · i′l.
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This order is used implicitly throughout the rest of the paper.

4.2.1. The 3-component case.

Let L be a 3-component link, then L can be seen as the closure of a 3-component

string link β. As mentioned in Remark 3.2, up to link-homotopy, string links correspond

to pure braids. Thus β can be seen as the closure of the normal form:

(12)ν12(13)ν13(23)ν23(123)ν123 ,

for some integers ν12, ν13, ν23 and ν123. See the left-hand side of Figure 20.

Figure 20. Operation (x̄2, x̄2)1 on the 3-component normal form.

We now investigate how these numbers vary under operations (x̄i, x̄i)k for i ̸= k ∈
{1, 2, 3}; we apply for example (x̄2, x̄2)1. By Definition 4.2 this corresponds to intro-

ducing the claspers ∆ and (12)−1 as shown in the right-hand side of Figure 20, which we

then put in normal form. This is done by sliding the 1-leaf of ∆ along the first compo-

nent to obtain (12) and simplify it with (12)−1. By move (2) from Proposition 2.7, this

sliding creates new claspers, but by Lemma 2.6, the only claspers that do not vanish up

to link-homotopy, are those created when ∆ crosses the leaves of (13)ν13 : more precisely,

in this process, ν13 copies of {1, 2, 3}-supported claspers appear. Finally, according to

Remark 2.8 we can rearrange these new claspers and the normal form becomes

(12)ν12(13)ν13(23)ν23(123)ν123+ν13 .

The other operations (x̄i, x̄i)k act in a similar way, by changing ν123 by a multiple of ν12,

ν13 or ν23. Summarizing we have shown that

ν12, ν13, ν23 and ν123 mod gcd(ν12, ν13, ν23),

form a set of complete invariants for 3-component links up to link-homotopy.

Note that we recover here Milnor invariants µ12, µ13, µ23 and µ123, that we already

knew to be complete link-homotopy invariants for 3-component links (see [22]).

4.2.2. The 4-component case.

Before proceeding with the link-homotopy classification of 4-component links, we

need the following technical result.
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Lemma 4.5. Let C be a union of simple claspers for the trivial n-component braid

1, and let l ∈ {1, . . . , n}. Let T be a clasper in C with l in its support and let CT =
∪

T ′

be the union of all claspers in C such that supp(T ′) ∩ supp(T ) = {l}. Suppose that an

l-leaf f of T is disjoint from a 3-ball B containing all l-leaves of CT . Then the closure

of 1C is link-homotopic to the closure of 1C′
where C ′ is obtained from C by passing f

across the ball B as shown in Figure 21.

Proof. First the result is clear if T has several l-leaves, since by Lemma 2.6, T

vanishes up to link-homotopy. By Remark 2.8 the edges of any clasper in CT can freely

cross those of T but f and the l-leaves of claspers in CT cannot be freely exchanged.

However according to Remark 2.8 again, the leaf f can be freely exchanged with any

l-leaf of claspers in C \ CT , since their supports contain at least some k ̸= l which is

in supp(T ). By using the closure we can thus slide f in the other direction, using the

closure of 1, and bypass the l-leaves of claspers in CT all gathered in B. □

Figure 21. Illustration of Lemma 4.5.

Although the assumption of Lemma 4.5 may seem restrictive, it turns out to be

naturally satisfied for normal forms. For instance, we have the following consequence.

Proposition 4.6. Let C = (α1)
ν1 · · · (αm)νm be the normal form of a pure

homotopy n-component braid and let (α) be a degree n − 2 comb-clasper. Then C

and C ′ = (α1)
ν1 · · · (α)(αi)

νi(α)−1 · · · (αm)νm have link-homotopic closures, for any

i ∈ {1, . . . ,m}.

Proof. We first consider the product (α1)
ν1 · · · (αi)

νi(α)(α)−1 · · · (αm)νm where

we just insert the trivial term (α)(α)−1 in C. We next want to exchange (α) and (αi)
νi .

This is allowed if |supp(α)∩supp(αi)| ≥ 2 by Remark 2.8, but if supp(α)∩supp(αi) = {l}
we can only realize crossing changes between the edges of (α) and (αi)

νi (see Remark 2.8).

However in that case (αi) is a comb-clasper of support {k, l} with k the only component

not in the support of (α), thus we can apply Lemma 4.5 to the l-leaf of (α), and bypass

the block (αi)
νi (corresponding to CT in Lemma 4.5). □
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Figure 22. Normal form for 4 components.

Let us now return to the classification of links up to link-homotopy and let L be a

4-component link seen as the closure of the normal form:

(12)ν12(13)ν13(14)ν14(23)ν23(24)ν24(34)ν34(123)ν123(124)ν124

(134)ν134(234)ν234(1234)ν1234(1324)ν1324 ,

for some integers ν12, ν13, ν14, ν23, ν24, ν34, ν123, ν124, ν134, ν234, ν1234, and ν1324. See

Figure 22.

We can apply Proposition 4.6 to the degree 2 comb-claspers (123), (124), (134) and

(234). For example, applying Proposition 4.6 to (α) = (234) and (αi) = (12), we get

that L is link-homotopic to the closure of:

(234)(12)ν12(234)−1(13)ν13(14)ν14(23)ν23(24)ν24(34)ν34(123)ν123

(124)ν124(134)ν134(234)ν234(1234)ν1234(1324)ν1324 .

By clasper calculus (Proposition 2.7 and Remark 2.8), we have (234)(12)ν12(234)−1 ∼
(12)ν12(1234)ν12 . The product of claspers (1234)ν12 can be freely homotoped by Re-

mark 2.8, thus producing the normal form:

(12)ν12(13)ν13(14)ν14(23)ν23(24)ν24(34)ν34(123)ν123(124)ν124

(134)ν134(234)ν234(1234)ν1234+ν12(1324)ν1324 ,
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whose closure is link-homotopic to L. This is recorded in the first row of Table 1, which

records all possible transformations on clasp-numbers obtained with Proposition 4.6.

Each row represents a possible transformation where the entry in the column να repre-

sents the variation of the clasp-number να. Note that an empty cell means that the cor-

responding clasp-number remains unchanged. Note also that, we only need two columns

because for the comb-claspers of degree 1 or 2 the associated clasp-numbers remain un-

changed.

Table 1. Some clasp-numbers variation with same closures.

ν1234 ν1324

ν12
ν34

ν13
ν24

ν14 −ν14
ν23 −ν23

Let us now describe how operations (x̄i, x̄i)k for i ̸= k in {1, . . . , 4} affect clasp-

numbers. As for the 3-component case, (x̄i, x̄i)k corresponds to sliding the i-leaf of a

simple clasper of support {i, j} (denoted ∆ in Definition 4.2) along the i-th component.

Along the way ∆ encounters leaves and edges of other claspers, that can be crossed as

described by moves (2) and (4) of Proposition 2.7. In doing so, claspers of degree 2 and 3

may appear, that we must reposition in the normal form. Those of degree 3 commute

with any clasper by Remark 2.8, but since they may not be comb-claspers we have to use

IHX relations (Proposition 2.11) to turn them into comb-claspers. Claspers of degree 2

can be repositioned using Remark 2.8 and Lemma 4.5 (the fact that Lemma 4.5 applies

is clear according to the shape of the normal form, where factors are stacked).

We detail as an example operation (x̄4, x̄4)2. In that case ∆ has support {2, 4} and

we slide its 2-leaf along the 2nd component. According to Remark 2.8, ∆ can freely cross

the edges of claspers with 4 in their support and the 2-leaves of claspers containing 2

and 4 in their support. Thus we only consider the claspers that appear when ∆ meets

the edges of (13)ν13 and the 2-leaves of (12)ν12 , (23)ν23 and (123)ν123 . Once repositioned

we obtain in order the factors (1324)ν13 , (124)ν12 , (234)−ν23 and (1324)−ν123 . However

according to Table 1, (1324)ν13 can be removed up to link-homotopy and thus we get the

following normal form:

(12)ν12(13)ν13(14)ν14(23)ν23(24)ν24(34)ν34(123)ν123(124)ν124+ν12

(134)ν134(234)ν234−ν23(1234)ν1234(1324)ν1324−ν123 .

In the same way, we compute all operations (x̄i, x̄i)k and record them in Table 2.

The entry in row (x̄i, x̄i)k represents the corresponding operation. As in Table 1, an

empty cell means that (x̄i, x̄i)k does not change the clasp-number. Moreover the νik
columns are omitted because they remain unchanged by any operations.

There are however algebraic redundancies in Table 2, i.e. some lines are combinations

of other lines, which means that some operation (x̄i, x̄i)k generate the others. So we can
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Table 2. Clasp-numbers variations under operations (x̄i, x̄i)k.

ν123 ν124 ν134 ν234 ν1234 ν1324

(x̄2, x̄2)1 ν13 ν14 ν134
(x̄3, x̄3)1 −ν12 ν14 ν124
(x̄4, x̄4)1 −ν12 −ν13 −ν123 ν123

(x̄1, x̄1)2 −ν23 −ν24 −ν234
(x̄3, x̄3)2 ν12 ν24 ν124 −ν124
(x̄4, x̄4)2 ν12 −ν23 −ν123

(x̄1, x̄1)3 ν23 −ν34 ν234
(x̄2, x̄2)3 −ν13 −ν34 −ν134 ν134
(x̄4, x̄4)3 ν13 ν23 ν123

(x̄1, x̄1)4 ν24 ν34 ν234 −ν234
(x̄2, x̄2)4 −ν14 ν34 −ν134
(x̄3, x̄3)4 −ν14 −ν24 −ν124

keep only these ones (or their opposite), which we call “generating” operations, and

which we record in Table 3.

Table 3. Clasp-numbers variations under generating operations.

ν123 ν124 ν134 ν234 ν1234 ν1324

ν13 ν14 ν134
−ν12 ν14 ν124
ν23 ν24 ν234

−ν12 ν23 ν123
ν23 −ν34 ν234

ν13 ν23 ν123
ν14 −ν34 ν134

ν14 ν24 ν124

Finally, with Table 3 we reinterpret the homotopy classification of 4-component links

as follows:

Theorem 4.7. Two 4-component links, seen as closures of braids in normal forms

(see Figure 22), are link-homotopic if and only if their clasp-numbers are related by a

sequence of transformations from Table 3.

Remark 4.8. Table 1 was only used here as a tool to simplify the computations

summarized in Table 2. We stress that Table 3 alone suffices to generate Table 1 and

Table 2. In particular, Table 1 is obtained by “commuting” the rows of Table 3. More

precisely let us denote by [Ri]k the variation associated to the i-th row of Table k. Let us

also denote by [Ri, Rj ]k the “commutator of rows i and j” from Table k, i.e. the variation

obtained by applying the i-th row of Table k, then the j-th, then the opposite of the

i-th and finally the opposite of the j-th. Thus, Table 3 generates the rows of Table 1 as

follows:
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[R1]1 = [R6, R2]3, [R2]1 = [R1, R5]3, [R3]1 = [R6, R7]3,

[R4]1 = [R3, R2]3, [R5]1 = [R2, R1]3, [R6]1 = [R5, R6]3.

Note that Levine in [17] already proved a similar result. The purpose of this

paragraph is to explain the correspondence between the two approaches. The strategy

adopted in [17] consists in fixing the first three components and let the fourth one carry

the information of the link-homotopy indeterminacy. Levine used four integers k, l, r, d to

describe a normal form for the first three components, and integers ei with i ∈ {1, . . . , 8}
to describe the information of the last component. Finally in [17, Table 3] he gives a

list of all possible transformations on ei-numbers that do not change the link-homotopy

class. Fixing the last component corresponds in our setting to fixing the clasp-number

ν123: this is why [17, Table 3] has one less column than Tables 2 and 3. Moreover

the five rows of [17, Table 3] correspond to (x̄3, x̄3)
−1
1 , (x̄4, x̄4)

−1
2 , (x̄1, x̄1)4, (x̄3, x̄3)4

and (x̄1, x̄1)
−c
2 ◦ (x̄3, x̄3)

−a
1 ◦ (x̄2, x̄2)

−b
1 , respectively, and Levine’s integers correspond to

clasp-numbers as follows:

k r l d e1 e2 e3 e4 e5 e6 e7 e8
ν12 ν13 ν23 ν123 ν14 ν24 ν34 ν124 ν134 ν234 −ν1324 −ν1234

4.2.3. The 5-component algebraically split case.

This section is dedicated to the study of 5-components algebraically split links. These

are links such that the linking number is zero for any pair of components. Equivalently,

algebraically split links are given by the closure of a normal form with trivial clasp-

numbers for any degree one comb-clasper.

The following proposition is the algebraically split version of Proposition 4.6. The

proof is essentially same and is left to the reader.

Proposition 4.9. Let C = (α1)
ν1 · · · (αm)νm be a normal form of a pure homotopy

n-component braid with νi = 0 for any (αi) of degree one, and let (α) be a degree n− 3

comb-clasper. Then C and C ′ = (α1)
ν1 · · · (α)(αi)

νi(α)−1 · · · (αm)νm have link-homotopic

closures, for any i ∈ {1, . . . ,m}.

Now, let L be a 5-component algebraically split link seen as the closure of the normal

form:

C = (123)ν123(124)ν124(125)ν125(134)ν134(135)ν135(145)ν145(234)ν234(235)ν235(245)ν245

(345)ν345(1234)ν1234(1235)ν1235(1245)ν1245(1324)ν1324(1325)ν1325(1345)ν1345

(1425)ν1425(1435)ν1435(2345)ν2345(2435)ν2435(12345)ν12345(12435)ν12435

(13245)ν13245(13425)ν13425(14235)ν14235(14325)ν14325 .

The strategy is similar to the 4-component case. We see links as braid closures, and

with Theorem 3.32 we know that any braid is uniquely determined by a set of clasp-

numbers {να}. In this case, the algebraically split condition results in the vanishing of

clasp-numbers νij (i.e. να = 0 for all (α) of degree 1). Now, as mentioned by Theorem 4.4,

the classification of links up to link-homotopy reduces to determining how operations

(x̄i, x̄i)k for i ̸= k in {1, . . . , 5} affect the clasp-numbers.
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We first use Proposition 4.9 to simplify the upcoming computations. In that case

Proposition 4.9 concerns degree 2 comb-claspers (123), (124), (125), (134), (135), (145),

(234), (235), (245) and (345). We record in Table 4 all possible transformations on

clasp-numbers obtained with Proposition 4.9. As before, each row represents a possi-

ble transformation, where the entry in the column να represents the variation of the

clasp-number να, and an empty cell means that the corresponding clasp-number remains

unchanged. Note also that we only need columns corresponding to degree 4 comb-claspers

because the other clasp-numbers remain unchanged.

Table 4. Some clasp-numbers variations with same closure.

ν12345 ν12435 ν13245 ν13425 ν14235 ν14325

ν123
ν123

ν124
ν124

ν125 −ν125
ν125 −ν125
ν134

ν134
ν135 −ν135

ν135 −ν135
ν145 −ν145

ν145 −ν145
ν234 −ν234 −ν234 ν234

ν234 −ν234 ν234 −ν234
ν235

ν235
ν245

ν245
ν345

ν345

Finally, we compute the effect of all operations (x̄i, x̄i)k using Definition 4.2 and

Table 4, and simplify the results keeping only the “generating” operations, as in the 4-

component case. We record the corresponding clasp-number variations in Table 5. As for

the 4-component case, Table 5 contains all the data for the classification of 5-component

algebraically split links. In other words we obtain the following classification result.

Theorem 4.10. Two 5-component algebraically split links, seen as closures of

braids in normal forms, are link-homotopic if and only if their clasp-numbers are re-

lated by a sequence of transformations from Table 5.

Remark 4.11. Just as in Remark 4.8, only Table 5 is needed here as it generates

Table 4. With the same notations as in Remark 4.8 and with the additional notation

“◦” for composition, we get:
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[R1]4 = [R12, R3]5 ◦ [R5, R6]5, [R2]4 = [R6, R5]5, [R3]4 = [R11, R12]5,

[R4]4 = [R6, R14]5, [R5]4 = [R5, R11]5 ◦ [R3, R11]5, [R6]4 = [R3, R11]5,

[R7]4 = [R12, R13]5, [R8]4 = [R8, R9]5, [R9]4 = [R1, R5]5,

[R10]4 = [R13, R5]5, [R11]4 = [R2, R1]5, [R12]4 = [R13, R14]5,

[R13]4 = [R6, R4]5, [R14]4 = [R7, R9]5, [R15]4 = [R5, R10]5,

[R16]4 = [R7, R3]5, [R17]4 = [R4, R2]5, [R18]4 = [R10, R11]5,

[R19]4 = [R1, R7]5, [R20]4 = [R10, R1]5.
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Table 5.
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Note Added in Proof. After this paper was published online in advance, the

author observed a discrepancy between the algebraic convention in Definition 3.21 for

the Artin representation and the topological convention in Section 3.3.2. Correcting

the expression ρ(σi)(xi+1) = xi+1xix
−1
i+1 to ρ(σi)(xi+1) = x−1

i+1xixi+1 in Definition 3.21

would address this inconsistency.


